Publications

Filter by type

Filter by research group

Sort

Steps leading up around a corner with handrail and colourful wall mural

Type

Journal Paper

Themes

Assistive & Accessible Technology

Research Group

Disability Interactions
Physiological Computing
STEP-UP: Enabling Low-Cost IMU Sensors to Predict the Type of Dementia During Everyday Stair Climbing

Catherine Holloway, William Bhot, Keir X. X. Yong, Ian McCarthy, Tatsuto Suzuki, Amelia Carton, Biao Yang, Robin Serougne, Derrick Boampong, Nick Tyler, Sebastian J. Crutch, Nadia Berthouze and Youngjun Cho

Posterior Cortical Atrophy is a rare but significant form of dementia which affects people's visual ability before their memory. This is often misdiagnosed as an eyesight rather than brain sight problem. This paper aims to address the frequent, initial misdiagnosis of this disease as a vision problem through the use of an intelligent, cost-effective, wearable system, alongside diagnosis of the more typical Alzheimer's Disease.

Frontiers in Computer Science

Abstract

STEP-UP: Enabling Low-Cost IMU Sensors to Predict the Type of Dementia During Everyday Stair Climbing

Posterior Cortical Atrophy is a rare but significant form of dementia which affects people's visual ability before their memory. This is often misdiagnosed as an eyesight rather than brain sight problem. This paper aims to address the frequent, initial misdiagnosis of this disease as a vision problem through the use of an intelligent, cost-effective, wearable system, alongside diagnosis of the more typical Alzheimer's Disease. We propose low-level features constructed from the IMU data gathered from 35 participants, while they performed a stair climbing and descending task in a real-world simulated environment. We demonstrate that with these features the machine learning models predict dementia with 87.02% accuracy. Furthermore, we investigate how system parameters, such as number of sensors, affect the prediction accuracy. This lays the groundwork for a simple clinical test to enable detection of dementia which can be carried out in the wild.

STEP-UP: Enabling Low-Cost IMU Sensors to Predict the Type of Dementia During Everyday Stair Climbing

A dusty market street in an African country

Type

Workshop

Themes

Assistive & Accessible Technology

Research Group

Disability Interactions
Disability Design and Innovation in Low Resource Settings: Addressing Inequality Through HCI.

Giulia Barbareschi, Dafne Zuleima Morgado-Ramirez, Catherine Holloway, Swami Manohar Swaminathan, Aditya Vashistha, and Edward Cutrell.

Approximately 15% of the world's population has a disability and 80% live in low resource-settings, often in situations of severe social isolation. Technology is often inaccessible or inappropriately designed, hence unable to fully respond to the needs of people with disabilities living in low resource settings. Also lack of awareness of technology contributes to limited access. This workshop will be a call to arms for researchers in HCI to engage with people with disabilities in low resourced settings to understand their needs and design technology that is both accessible and culturally appropriate.

Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems.

Abstract

Disability Design and Innovation in Low Resource Settings: Addressing Inequality Through HCI.

Approximately 15% of the world's population has a disability and 80% live in low resource-settings, often in situations of severe social isolation. Technology is often inaccessible or inappropriately designed, hence unable to fully respond to the needs of people with disabilities living in low resource settings. Also lack of awareness of technology contributes to limited access. This workshop will be a call to arms for researchers in HCI to engage with people with disabilities in low resourced settings to understand their needs and design technology that is both accessible and culturally appropriate. We will achieve this through sharing of research experiences, and exploration of challenges encountered when planning HCI4D studies featuring participants with disabilities. Thanks to the contributions of all attendees, we will build a roadmap to support researchers aiming to leverage post-colonial and participatory approaches for the development of accessible and empowering technology with truly global ambitions.

Cite

Disability Design and Innovation in Low Resource Settings: Addressing Inequality Through HCI.

Giulia Barbareschi, Dafne Zuleima Morgado-Ramirez, Catherine Holloway, Swami Manohar Swaminathan, Aditya Vashistha, and Edward Cutrell. 2021. Disability Design and Innovation in Low Resource Settings: Addressing Inequality Through HCI. Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, Article 124, 1–5. DOI:https://doi.org/10.1145/3411763.3441340

Disability Design and Innovation in Low Resource Settings: Addressing Inequality Through HCI.

Type

Working Paper

Themes

Culture and Participation

Research Group

Disability Interactions
Barriers to Access and Retain Formal Employment for Persons with Disabilities in Bangladesh and Kenya

Nusrat Jahan and Catherine Holloway

This working paper was developed to support the development of challenge statements for a GDI Hub innovation challenge fund call related to improving access to and retention of employment for persons with disabilities in Kenya and Bangladesh and is written by GDI Hub's Nusrat Jahan and Professor Catherine Holloway.

The issue of disability and employment has taken centre stage on the global arena in part because it is recognised across several areas of the United Nations Sustainable Development Goals, in which confrontation of extreme poverty in its many manifestations is the number one goal [2]. The World Health Organization (2011) reports about 15 percent of the world’s population has a disability [1]. In developing countries, 80 to 90 percent of people with disabilities of working age are unemployed.

Download

Abstract

Barriers to Access and Retain Formal Employment for Persons with Disabilities in Bangladesh and Kenya

Globally persons with disabilities have lower employment rates compared to the general population due to systemic barriers particularly in the formal sector. In developing countries, 80 percent to 90 percent of people with disabilities of working age are unemployed. There has been limited research in low-income and middle-income countries focused on the barriers to access and retain formal employment for persons with disabilities. The aim of this paper, based on desk research, is to analyse the barriers to access and retain formal employment of persons with disabilities which are framed in three categories according to where the barriers primarily manifest: 1. In the workplace among employers and co-workers without disabilities, 2. Among persons with disabilities seeking or engaged in formal employment and 3. In the wider social, physical and policy environment. Although the study mainly focuses on Kenya and Bangladesh other countries’ literature on access to and retention of employment of persons with disabilities were reviewed where relevant. In the current context where the global pandemic is breaking barriers to remote working one part of the solution will be to empower persons with disabilities with appropriate access to Information and Communication Technology, assistive devices and services, digital skills, creating more accessible and inclusive digital platforms for persons with disabilities which also hold the potential to improve working conditions and productivity for the whole workforce as well as enhancing resilience to potential future shocks.

Cite

Barriers to Access and Retain Formal Employment for Persons with Disabilities in Bangladesh and Kenya

Jahan & Holloway, 2020, Barriers to Access and Retain Formal Employment for Persons with Disabilities in Bangladesh and Kenya, GDI Hub Working Paper Series Issue 01

Barriers to Access and Retain Formal Employment for Persons with Disabilities in Bangladesh and Kenya

3D printing

Type

PhD

Themes

Assistive & Accessible Technology

Research Group

Disability Interactions
Design rules for additively-manufactured wrist splints

Sarah Kelly

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of Loughborough University.

Loughborough University

Visit publisher

Abstract

Design rules for additively-manufactured wrist splints

Additive Manufacturing (AM) often known by the term three-dimensional printing (3DP) has been acknowledged as a potential manufacturing revolution. AM has many advantages over conventional manufacturing techniques; AM techniques manufacture through the addition of material - rather than traditional machining or moulding methods. AM negates the need for tooling, enabling cost-effective low-volume production in high-wage economies and the design & production of geometries that cannot be made by other means. In addition, the removal of tooling and the potential to grow components and products layer-by-layer means that we can produce more from less in terms of more efficient use of raw materials and energy or by making multifunctional components and products. The proposed Centre for Doctoral Training (CDT) in Additive Manufacturing and 3D Printing has the vision of training the next generation of leaders, scientists and engineers in this diverse and multi-disciplinary field. As AM is so new current training programmes are not aligned with the potential for manufacturing and generally concentrate on the teaching of Rapid Prototyping principles, and whilst this can be useful background knowledge, the skills and requirements of using this concept for manufacturing are very different. This CDT will be training cohorts of students in all of the basic aspects of AM, from design and materials through to processes and the implementation of these systems for manufacturing high value goods and services. The CDT will also offer specialist training on aspects at the forefront of AM research, for example metallic, medical and multi-functional AM considerations. This means that the cohorts graduating from the CDT will have the background knowledge to proliferate throughout industry and the specialist knowledge to become leaders in their fields, broadening out the reach and appeal of AM as a manufacturing technology and embedding this disruptive technology in company thinking. In order to give the cohorts the best view of AM, these students will be taken on study tours in Europe and the USA, the two main research powerhouses of AM, to learn from their international colleagues and see businesses that use AM on a daily basis. One of the aims of the CDT in AM is to educate and attract students from complementary basic science, whether this be chemistry, physics or biology. This is because AM is a fast moving area. The benefits of having a CDT in AM and coupling with students who have a more fundamental science base are essential to ensure innovation & timeliness to maintain the UK's leading position. AM is a disruptive technology to a number of industrial sectors, yet the CDTs industrial supporters, who represent a breadth of industrial end-users, welcome this disruption as the potential business benefits are significant. Growing on this industry foresight, the CDT will work in key markets with our supporters to ensure that AM is positioned to provide a real and lasting contribution & impact to UK manufacturing and provide economic stability and growth. This contribution will provide societal benefits to UK citizens through the generation of wealth and employment from high value manufacturing activities in the UK.

Cite

Design rules for additively-manufactured wrist splints

Kelly, Sarah (2020): Design rules for additively-manufactured wrist splints. Loughborough University. Thesis. https://doi.org/10.26174/thesi...;

Design rules for additively-manufactured wrist splints

Kenyan man holding a prosthesis

Type

PhD

Themes

Assistive & Accessible Technology

Research Group

Disability Interactions
Exploring Thermal Discomfort Amongst Lower-Limb Prosthesis Wearers

Rhys James Williams

Thesis: Firstly, the research provides a methodological contribution showing how to conduct mixed-methods research to obtain rich insights into complex prosthesis phenomena. Secondly, the research highlights the need to appreciate psychological and contextual factors when researching prosthesis wearer thermal comfort. The research contributions are also converted into an implication for prosthesis design. The concept of 'regaining control' to psychologically mitigate thermal discomfort could be incorporated into technologies by using 'on-demand' thermal discomfort relief, rather than 'always-on' solutions, as have been created in the past.

UCL, ProQuest Dissertations Publishing

Visit publisher

Abstract

Exploring Thermal Discomfort Amongst Lower-Limb Prosthesis Wearers

Amongst lower-limb prosthesis wearers, thermal discomfort is a common problem with an estimated prevalence of more than 50%. Overheating does not just create discomfort to the user, but it has been linked to excessive sweating, skin damage caused by a moist environment and friction. Due to impermeable prosthetic components and a warm moist environment, minor skin damage can result in skin infections that can lead to prosthesis cessation, increased social anxiety, isolation and depression. Despite the seriousness of thermal discomfort, few studies explore the issue, with research predominantly constrained to controlled laboratory scenarios, with only one out of laboratory study. In this thesis, studies investigate how thermal discomfort arises and what are the consequences of thermal discomfort for lower-limb prosthesis wearers. Research studies are designed around the principles of presenting lived experiences of the phenomenon and conducting research in the context of participants' real-life activities. A design exploration chapter investigates modifying liner materials and design to create a passive solution to thermal discomfort. However, this approach was found to be ineffective and unfeasible. Study 1 presents a qualitative study which investigates the user experience of a prosthesis, thermal discomfort and related consequences. Study 2 explores limb temperature of male amputees inside and outside the laboratory, with the latter also collecting perceived thermal comfort (PTC) data. Finally, Study 3 investigates thermal discomfort in the real-world and tracks limb temperature, ambient conditions, activities, and experience sampling of PTC. While there were no apparent relationships presented in sensor data, qualitative data revealed that in situations where prosthesis wearers perceived a lack of control, thermal discomfort seemed to be worse. When combined, the studies create two knowledge contributions. Firstly, the research provides a methodological contribution showing how to conduct mixed-methods research to obtain rich insights into complex prosthesis phenomena. Secondly, the research highlights the need to appreciate psychological and contextual factors when researching prosthesis wearer thermal comfort. The research contributions are also converted into an implication for prosthesis design. The concept of 'regaining control' to psychologically mitigate thermal discomfort could be incorporated into technologies by using 'on-demand' thermal discomfort relief, rather than 'always-on' solutions, as have been created in the past.

Cite

Exploring Thermal Discomfort Amongst Lower-Limb Prosthesis Wearers

Williams, Rhys James. “Exploring Thermal Discomfort Amongst Lower-Limb Prosthesis Wearers.” ProQuest Dissertations Publishing, 2020. Print.

Exploring Thermal Discomfort Amongst Lower-Limb Prosthesis Wearers

Screenshot of a page of the thesis describing function & Type of Maxillofacial Prostheses

Type

PhD

Themes

Assistive & Accessible Technology

Research Group

Disability Interactions
Materials For Facial Prostheses In Resource Limited Countries

Sophia Esther Liiba Tetteh

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of Loughborough University

Loughborough University

Visit publisher

Abstract

Materials For Facial Prostheses In Resource Limited Countries

Facial prostheses are artificial devices that replace a missing body part in the facial and neck regions of the body. Defects or deformities in these regions can lead to functional deficiencies; social and psychological effects in addition to cosmetic defects. Restoration or rehabilitation in resource limited countries is usually provided by charities and organisations volunteering assistance overseas, with some training of local staff in the fabrication of these prostheses. Furthermore, these countries typically lack technical knowhow and trained personnel. In industrialised nations maxillofacial prosthetics has developed into a sophisticated medical speciality requiring highly skilled staff and expensive facilities. In resource limited countries surgical procedures may be an option for rehabilitation of these deformities/defects however, they tend to be unavailable or unaffordable and donated prostheses are not suitable. Hence, this research explores, from first principles, the appropriate and affordable local provision of maxillofacial prostheses in resource constrained regions. The investigation provides knowledge on identifying requirements for resource limited areas, resulting in the creation of a guideline constituting priorities, requirements and specifications. It further explores the viability of potentially cheaper, locally available candidate materials via weathering and antimicrobial methods in ascertaining material longevity.

Cite

Materials For Facial Prostheses In Resource Limited Countries

Tetteh, Sophia (2019): Materials for facial prostheses in resource-limited countries. Loughborough University. Thesis. https://doi.org/10.26174/thesi...;

Materials For Facial Prostheses In Resource Limited Countries

A man holding a bicycle seat with a 3d printed splint on his wrist

Type

PhD

Themes

Assistive & Accessible Technology

Research Group

Disability Interactions
Understanding wrist splint user needs and personalisation through codesign

Charlotte Pyatt

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy at Loughborough University.

Loughborough University

Visit publisher

Abstract

Understanding wrist splint user needs and personalisation through codesign

Wrist splints are a common treatment for rheumatoid arthritis, however their effectiveness is compromised by patients not wearing splints as often as prescribed. Previous research has identified a number of reasons for non-compliance, but typically lacks insights that could lead to improved splint design.

This thesis investigates the motivators for patients to wear and not wear their wrist splints and, the impact of personalisation of splint appearance on patient wear. The work is based on the premise that digital design and manufacturing processes, such as Computer-Aided Design (CAD) and 3D Printing, can produce bespoke splints on demand.

The research begins with a literature review across the core areas of: splinting, additive manufacture, product appearance and personalisation. This literature review identifies gaps in knowledge from which research questions are established for the work.

The research employs a qualitative, generative design research approach and, follows a codesign framework employing telling, making and enacting tools. The thesis is made up of three studies. The first study is a sensitisation study and uses design probes to prepare the participants for the research and begin exploring the problem space. The second is a comprehensive study into participants splint wear behaviour and uses context mapping and scenario picture card tools to investigate the motivators for participants to wear and not wear wrist splints, along with positive and negative outcomes or wearing/not wearing splints. The final study uses a personalisation toolkit to elicit patient needs for a future wrist splint design and investigate self-reported expectations regarding compliance of patients who used the toolkit.

The research finds that patient compliance is affected by practical and aesthetic limitations of current splints. It identifies 4 motivating factors to wear a splint and 10 motivating factors to not wear a splint. Additionally, it identifies 6 positive outcomes of wearing splints, 6 negative outcomes of wearing splints, 3 positive outcomes of not wearing splints and 3 negative outcomes of not wearing splints. Requirements for an improved splint design are established and form the basis of the design for a prototype personalisation toolkit. Testing of this toolkit reveals that patients are keen to own more than one splint and personalise splints to match the scenario in which it is to be worn. Patients reported that they expected to be more compliant with a personalised splint when compared to their current splint.

Cite

Understanding wrist splint user needs and personalisation through codesign

Pyatt, Charlotte (2018): Understanding wrist splint user needs and personalisation through codesign. Loughborough University. Thesis. https://doi.org/10.26174/thesi...;

Understanding wrist splint user needs and personalisation through codesign

Image of a young man in a red t-shirt sitting in his wheelchair inside a community space

Type

PhD

Themes

Assistive & Accessible Technology

Research Group

Disability Interactions
YouTransfer, YouDesign: A Participatory Approach to Design Assistive Technology for Wheelchair Transfers

Giulia Barbareschi

Doctoral Thesis. This thesis makes two contributions to facilitate wheelchair users’ engagement in the participatory design process for ATs, while being mindful of the burden of participation. The first contribution is a framework that provides a modular structure guiding the participatory design process from initial problem identification and analysis to facilitating collaborations between wheelchair users and designers. The framework identifies four factors determining the need and adoption process for ATs: (i) People focuses on the target population, (ii) Person includes personal characteristics, (iii) Activity refers to the challenges associated with the task, and (iv) Context encompasses the effect of the environment in which the activity takes place. The second contribution constitutes a rich picture of personal and external elements influencing real world wheelchair transfers that emerged from four studies carried out to investigate the effect of the framework factors on the design process for ATs.

UCL (University College London)

Visit publisher

Abstract

YouTransfer, YouDesign: A Participatory Approach to Design Assistive Technology for Wheelchair Transfers

Transferring independently to and from their wheelchair is an essential routine task for many wheelchair users but it can be physically demanding and can lead to falls and upper limb injuries that reduce the person’s independence. New assistive technologies (ATs) that facilitate the performance of wheelchair transfers have the potential to allow wheelchair users to gain further independence. To ensure that users’ needs are addressed by ATs, the active involvement of wheelchair users in the process of design and development is critical. However, participation can be burdensome for many wheelchair users as design processes where users are directly involved often require prolonged engagement. This thesis makes two contributions to facilitate wheelchair users’ engagement in the participatory design process for ATs, while being mindful of the burden of participation. The first contribution is a framework that provides a modular structure guiding the participatory design process from initial problem identification and analysis to facilitating collaborations between wheelchair users and designers. The framework identifies four factors determining the need and adoption process for ATs: (i) People focuses on the target population, (ii) Person includes personal characteristics, (iii) Activity refers to the challenges associated with the task, and (iv) Context encompasses the effect of the environment in which the activity takes place. The second contribution constitutes a rich picture of personal and external elements influencing real world wheelchair transfers that emerged from four studies carried out to investigate the effect of the framework factors on the design process for ATs. A related outcome based on these contributions is a framing document to share knowledge between wheelchair users and designers to provide focus and promote an equal collaboration among participants.

Cite

YouTransfer, YouDesign: A Participatory Approach to Design Assistive Technology for Wheelchair Transfers

Barbareschi, Giulia. “YouTransfer, YouDesign : a Participatory Approach to Design Assistive Technology for Wheelchair Transfers / Giulia Barbareschi.” Thesis (Ph.D.)--University College London, 2018., 2018. Print.

YouTransfer, YouDesign: A Participatory Approach to Design Assistive Technology for Wheelchair Transfers

Kenyan man holding a prosthesis

Type

PhD

Themes

Assistive & Accessible Technology

Research Group

Disability Interactions
Specifying a Hybrid, Multiple Material CAD System for Next Generation Prosthetic Design

Troy Bodkin

Doctoral Thesis. This work is one of four multidisciplinary research studies conducted by members of this research cluster, focusing on the area of Computer Aided Design (CAD) for improving the interface with Additive Manufacture (AM) to solve some of the challenges presented with improving prosthetic socket design, with an aim to improve and streamline the process to enable the involvement of clinicians and patients in the design process.

Loughborough University

Visit publisher

Abstract

Specifying a Hybrid, Multiple Material CAD System for Next Generation Prosthetic Design

For many years, the biggest issue that causes discomfort and hygiene issues for patients with lower limb amputations have been the interface between body and prosthetic, the socket. Often made of an inflexible, solid polymer that does not allow the residual limb to breathe or perspire and with no consideration for the changes in size and shape of the human body caused by changes in temperature or environment, inflammation, irritation and discomfort often cause reduced usage or outright rejection of the prosthetic by the patient in their day to day lives. To address these issues and move towards a future of improved quality of life for patients who suffer amputations, Loughborough University formed the Next Generation Prosthetics research cluster. This work is one of four multidisciplinary research studies conducted by members of this research cluster, focusing on the area of Computer Aided Design (CAD) for improving the interface with Additive Manufacture (AM) to solve some of the challenges presented with improving prosthetic socket design, with an aim to improve and streamline the process to enable the involvement of clinicians and patients in the design process. The research presented in this thesis is based on three primary studies. The first study involved the conception of a CAD criteria, deciding what features are needed to represent the various properties the future socket outlined by the research cluster needs. These criteria were then used for testing three CAD systems, one each from the Parametric, Non Uniform Rational Basis Spline (NURBS) and Polygon archetypes respectively. The result of these tests led to the creation of a hybrid control workflow, used as the basis for finding improvements. The second study explored emerging CAD solutions, various new systems or plug-ins that had opportunities to improve the control model. These solutions were tested individually in areas where they could improve the workflow, and the successful solutions were added to the hybrid workflow to improve and reduce the workflow further. The final study involved taking the knowledge gained from the literature and the first two studies in order to theorise how an ideal CAD system for producing future prosthetic sockets would work, with considerations for user interface issues as well as background CAD applications. The third study was then used to inform the final deliverable of this research, a software design specification that defines how the system would work. This specification was written as a challenge to the CAD community, hoping to inform and aid future advancements in CAD software. As a final stage of research validation, a number of members of the CAD community were contacted and interviewed about their feelings of the work produced and their feedback was taken in order to inform future research in this area.

Cite

Specifying a Hybrid, Multiple Material CAD System for Next Generation Prosthetic Design

Bodkin, Troy L. (2017): Specifying a hybrid, multiple material CAD system for next-generation prosthetic design. Loughborough University. Thesis. https://hdl.handle.net/2134/25...;

Specifying a Hybrid, Multiple Material CAD System for Next Generation Prosthetic Design

A graphic displaying a balance point between supply and demand. The demand is higher than the supply

Type

Journal Paper

Themes

Assistive & Accessible Technology
Climate & Crisis Resilience

Research Group

Disability Interactions
Measuring assistive technology supply and demand: A scoping review

Jamie Danemayer, Dorothy Boggs, Emma M. Smith, Vinicius Delgado Ramos, Linamara Rizzo Battistella, Cathy Holloway, and Sarah Polack

An assistive product (AP) is defined as a product used exter-nally to the human body, whose primary purpose is to main-tain or improve an individual’s functioning and independence and thereby promote his or her well-being (WHO, 2016). Global population aging forecasts a rise in the need for solu-tions that support participation and independence, including APs. In this paper, we review current population-level AP supply and demand estimation methods for five priority APs and provide recommendations for improving national and global AP market evaluation.

Assistive Technology The Official Journal of RESNA; 2021

Visit publisher

Abstract

Measuring assistive technology supply and demand: A scoping review

The supply of and market demand for assistive products (APs) are complex and influenced by diverse stakeholders. The methods used to collect AP population-level market data are similarly varied. In this paper, we review current population-level AP supply and demand estimation methods for five priority APs and provide recommendations for improving national and global AP market evaluation. Abstracts resulting from a systematic search were double-screened. Extracted data include WHO world region, publication year, age-groups, AP domain(s), study method, and individual assessment approach.497 records were identified. Vision-related APs comprised 65% (n = 321 studies) of the body of literature; hearing (n = 59), mobility (n = 24), cognitive (n = 2), and studies measuring multiple domains (n = 92) were proportionately underrepresented. To assess individual AP need, 4 unique approaches were identified among 392 abstracts; 45% (n = 177) used self-report and 84% (n = 334) used clinical evaluation. Study methods were categorized among 431 abstracts; Cross-sectional studies (n = 312, 72%) and secondary analyses of cross-sectional data (n = 61, 14%) were most common. Case studies illustrating all methods are provided. Employing approaches and methods in the contexts where they are most well-suited to generate standardized AP indicators will be critical to further develop comparable population-level research informing supply and demand, ultimately expanding sustainable access to APs.

Cite

Measuring assistive technology supply and demand: A scoping review

Jamie Danemayer, Dorothy Boggs, Emma M. Smith, Vinicius Delgado Ramos, Linamara Rizzo Battistella, Cathy Holloway & Sarah Polack (2021) Measuring assistive technology supply and demand: A scoping review, Assistive Technology, 33:sup1, S35-S49, DOI: 10.1080/10400435.2021.1957039

Measuring assistive technology supply and demand: A scoping review

Photograph of the Global Report On Assistive Technology paperback publication

Type

Editorial

Themes

Assistive & Accessible Technology

Research Group

Disability Interactions
Introduction to the companion papers to the global report on assistive technology

Johan Borg, Wei Zhang, Emma M. Smith, Cathy Holloway

GReAT, but do we care?

If accessible, assistive technology would be life changing for a billion people across the world today – and two billion people in 2050 (WHO, 2018). It would make the difference between independence and dependence, inclusion and exclusion, life and death. It holds the potential to improve and transform health, education, livelihood and social participation; fundamental human rights everyone is entitled to. And if we are lucky to grow old, the chances are that we all would use assistive technology by then. But do we care?

Assistive Technology, The Official Journal of RESNA; 2021

Visit publisher

Cite

Introduction to the companion papers to the global report on assistive technology

Johan Borg, Wei Zhang, Emma M. Smith & Cathy Holloway (2021) Introduction to the companion papers to the global report on assistive technology, Assistive Technology, 33:sup1, 1-2, DOI: 10.1080/10400435.2021.2003658

Introduction to the companion papers to the global report on assistive technology

Image of artwork by Jason Wiltshire-Mills, featured on the front cover of DIX

Type

Book

Research Group

Disability Interactions
Disability Interactions Creating Inclusive Innovations

; 2021

Visit publisher

Abstract

Disability Interactions Creating Inclusive Innovations

Disability interactions (DIX) is a new approach to combining cross-disciplinary methods and theories from Human Computer Interaction (HCI), disability studies, assistive technology, and social development to co-create new technologies, experiences, and ways of working with disabled people. DIX focuses on the interactions people have with their technologies and the interactions which result because of technology use. A central theme of the approach is to tackle complex issues where disability problems are part of a system that does not have a simple solution. Therefore, DIX pushes researchers and practitioners to take a challenge-based approach, which enables both applied and basic research to happen alongside one another. DIX complements other frameworks and approaches that have been developed within HCI research and beyond. Traditional accessibility approaches are likely to focus on specific aspects of technology design and use without considering how features of large-scale assistive technology systems might influence the experiences of people with disabilities. DIX aims to embrace complexity from the start, to better translate the work of accessibility and assistive technology research into the real world. DIX also has a stronger focus on user-centered and participatory approaches across the whole value chain of technology, ensuring we design with the full system of technology in mind (from conceptualization and development to large-scale distribution and access). DIX also helps to acknowledge that solutions and approaches are often non-binary and that technologies and interactions that deliver value to disabled people in one situation can become a hindrance in a different context. Therefore, it offers a more nuanced guide to designing within the disability space, which expands the more traditional problem-solving approaches to designing for accessibility. This book explores why such a novel approach is needed and gives case studies of applications highlighting how different areas of focus—from education to health to work to global development—can benefit from applying a DIX perspective. We conclude with some lessons learned and a look ahead to the next 60 years of DIX.

Disability Interactions Creating Inclusive Innovations